lunes, 7 de octubre de 2013

LOS ATOMOS:

- Quien fue el primer científico que utilizo la palabra átomo.
- Como se llama de una forma coloquial el modelo atómico de Thomson.
- Quien descubrió el protón.
- Quien descubrió el neutrón.
- Que es un electrón.
- Que es un protón.
- Que es un neutrón.
- Modelo atómico de Rutherford.
- Segunda entrada: enlace de una animación del modelo atómico de Rutherford.



1. Mientras Aristóteles sostenía que la materia podía dividirse infinitamente en partículas más y más pequeñas, Demócrito y Leucipo opinaban que el átomo era la mínima porción de materia y que era indivisible (a=sin; tomo=división).
Para esa época, la teoría de Aristóteles era la más aceptada, sin embargo, en el siglo XVIII, Voile y Newton aceptaron la Teoría de los Átomos. Por su parte, Dalton dijo que los elementos estaban formados por átomos iguales entre sí, pero diferentes de los átomos de otros elementos. Ya para el siglo XIX, se acepta la teoría de Dalton y se genera la idea del átomo formado por partículas más pequeñas (que serían protones, neutrones y electrones): El átomo sería divisible.


2.(de la analogía del inglés plum-pudding model)


3.Generalmente se le acredita a Ernest Rutherford el descubrimiento del protón. En el año 1918 Rutherford descubrió que cuando se disparan partículas alfa contra un gas de nitrógeno, sus detectores de centello muestran los signos de núcleos de hidrógeno. Rutherford determinó que el único sitio del cual podían provenir estos núcleos era del nitrógeno y que por tanto el nitrógeno debía contener núcleos de hidrógeno. Por estas razones Rutherford sugirió que el núcleo de hidrógeno, que en la época se sabía que su número atómico era 1, debía ser una partícula fundamental.
Antes que Rutherford, Eugene Goldstein había observado rayos catódicos compuestos de iones cargados positivamente en 1886. Luego del descubrimiento del electrón por J.J. Thomson, Goldstein sugirió que puesto que el átomo era eléctricamente neutro, el mismo debía contener partículas cargadas positivamente. Goldstein usó los rayos canales y pudo calcular la razón carga/masa. Encontró que dichas razones cambiaban cuando variaban los gases que usaba en el tubo de rayos catódicos. Lo que Goldstein creía que eran protones resultaron ser iones positivos. Sin embargo, sus trabajos fueron largamente ignorados por la comunidad de físicos.


4.Fue descubierto por James Chadwick en el año de 1932. Se localiza en el núcleo del átomo. Antes de ser descubierto el neutrón, se creía que un núcleo de número de masa A (es decir, de masa casi A veces la del protón) y carga Z veces la del protón, estaba formada por A protones y A-Z electrones. Pero existen varias razones por las que un núcleo no puede contener electrones. Un electrón solamente podría encerrarse en un espacio de las dimensiones de un núcleo atómico (10-12 cm) si fuese atraído por el núcleo mediante una fuerza electromagnética muy fuerte e intensa; sin embargo, un campo electromagnético tan potente no puede existir en el núcleo porque llevaría a la producción espontánea de pares de electrones negativos y positivos (positrones). Por otra parte, existe incompatibilidad entre los valores del espin de los núcleos encontrados experimentalmente y los que podrían deducirse de una teoría que los supusiera formados por electrones y protones; en cambio, los datos experimentales están en perfecto acuerdo con las previsiones teóricas deducidas de la hipótesis de que el núcleo consta sólo de neutrones y protones.
Ernest Rutherford propuso por primera vez la existencia del neutrón en 1920, para tratar de explicar que los núcleos no se desintegrasen por la repulsión electromagnética de los protones.



5.El electrón (del griego clásico ἤλεκτρον, ámbar), comúnmente representado por el símbolo: e, es una partícula subatómica con una carga eléctrica elemental negativa. Un electrón no tiene componentes o subestructura conocidos, en otras palabras, generalmente se define como una partícula elemental Tiene una masa que es aproximadamente 1836 veces menor con respecto a la del protón.El momento angular (espín) intrínseco del electrón es un valor semientero en unidades de h, lo que significa que es un fermión. Su antipartícula es denominada positrón: es idéntica excepto por el hecho de que tiene cargas —entre ellas, la eléctrica— de signo opuesto. Cuando un electrón colisiona con un positrón, las dos partículas pueden resultar totalmente aniquiladas y producir fotones de rayos gamma.
Los electrones, que pertenecen a la primera generación de la familia de partículas de los leptones,participan en las interacciones fundamentales, tales como la gravedad, el electromagnetismo y la fuerza nuclear débil. Como toda la materia, posee propiedades mecánico-cuánticas tanto de partículas como de ondas, de tal manera que pueden colisionar con otras partículas y pueden ser difractadas como la luz. Esta dualidad se demuestra de una mejor manera en experimentos con electrones a causa de su ínfima masa. Como los electrones son fermiones, dos de ellos no pueden ocupar el mismo estado cuántico, según el principio de exclusión de Pauli.



6.En física, el protón (del griego πρῶτον, prōton ['primero']) es una partícula subatómica con una carga eléctrica elemental positiva 1 (1,6 × 10-19 C). Igual en valor absoluto y de signo contrario a la del electrón, y una masa 1.836 veces superior a la de un electrón. Experimentalmente, se observa el protón como estable, con un límite inferior en su vida media de unos 1035 años, aunque algunas teorías predicen que el protón puede desintegrarse en otras partículas.
El protón y el neutrón, en conjunto, se conocen como nucleones, ya que conforman el núcleo de los átomos. En un átomo, el número de protones en el núcleo determina las propiedades químicas del átomo y qué elemento químico es. El núcleo del isótopo más común del átomo de hidrógeno (también el átomo estable más simple posible) está formado por un único protón. Al tener igual carga, los protones se repelen entre sí. Sin embargo, pueden estar agrupados por la acción de la fuerza nuclear fuerte, que a ciertas distancias es superior a la repulsión de la fuerza electromagnética. No obstante, cuando el átomo es grande (como los átomos de Uranio), la repulsión electromagnética puede desintegrarlo progresivamente.



7.El neutrón es una partícula subatómica, un nucleón, sin carga neta, presente en el núcleo atómico de prácticamente todos los átomos, excepto el protio. Aunque se dice que el neutrón no tiene carga, en realidad está compuesto por tres partículas fundamentales cargadas llamadas quarks, cuyas cargas sumadas son cero. Por tanto, el neutrón es un barión neutro compuesto por dos quarks de tipo abajo, y un quark de tipo arriba.
Fuera del núcleo atómico, los neutrones son inestables, teniendo una vida media de 15 minutos (885,7 ± 0,8 s); cada neutrón libre se descompone en un electrón, un antineutrino y un protón. Su masa es muy similar a la del protón, aunque ligeramente mayor.
El neutrón es necesario para la estabilidad de casi todos los núcleos atómicos, a excepción del isótopo hidrógeno-1. La interacción nuclear fuerte es responsable de mantenerlos estables en los núcleos atómicos.



8.Este modelo fue desarrollado por el físico Ernest Rutherford a partir de los resultados obtenidos en lo que hoy se conoce como el experimento de Rutherford en 1911. Representa un avance sobre el modelo de Thomson, ya que mantiene que el átomo se compone de una parte positiva y una negativa, sin embargo, a diferencia del anterior, postula que la parte positiva se concentra en un núcleo, el cual también contiene virtualmente toda la masa del átomo, mientras que los electrones se ubican en una corteza orbitando al núcleo en órbitas circulares o elípticas con un espacio vacío entre ellos. A pesar de ser un modelo obsoleto, es la percepción más común del átomo del público no científico.
Rutherford predijo la existencia del neutrón en el año 1920, por esa razón en el modelo anterior (Thomson), no se habla de éste.
Por desgracia, el modelo atómico de Rutherford presentaba varias incongruencias:
  • Contradecía las leyes del electromagnetismo de James Clerk Maxwell, las cuales estaban muy comprobadas mediante datos experimentales. Según las leyes de Maxwell, una carga eléctrica en movimiento (en este caso el electrón) debería emitir energía constantemente en forma de radiación y llegaría un momento en que el electrón caería sobre el núcleo y la materia se destruiría. Todo ocurriría muy brevemente.

No hay comentarios:

Publicar un comentario